加入星計劃,您可以享受以下權(quán)益:

  • 創(chuàng)作內(nèi)容快速變現(xiàn)
  • 行業(yè)影響力擴(kuò)散
  • 作品版權(quán)保護(hù)
  • 300W+ 專業(yè)用戶
  • 1.5W+ 優(yōu)質(zhì)創(chuàng)作者
  • 5000+ 長期合作伙伴
立即加入
  • 正文
    • 賽題背景
    • 全代碼
  • 推薦器件
  • 相關(guān)推薦
  • 電子產(chǎn)業(yè)圖譜
申請入駐 產(chǎn)業(yè)圖譜

阿里云天池大賽賽題(機(jī)器學(xué)習(xí))——工業(yè)蒸汽量預(yù)測(完整代碼)

04/29 16:56
2834
加入交流群
掃碼加入
獲取工程師必備禮包
參與熱點資訊討論

賽題背景

火力發(fā)電就是燃料燃燒加熱水生成蒸汽,蒸汽產(chǎn)生的壓力推動汽輪機(jī)旋轉(zhuǎn),進(jìn)而帶動電機(jī)旋轉(zhuǎn),產(chǎn)生電能。其中一系列的能量轉(zhuǎn)化中,影響發(fā)電效率的核心是鍋爐的燃燒效率,即加熱水產(chǎn)生的蒸汽量。而影響鍋爐燃燒效率的因素很多,包括鍋爐床溫、床壓、爐膛溫度、壓力等等。

這個賽題的目標(biāo)就是給一堆鍋爐傳感器采集的數(shù)據(jù)(38個特征變量),然后用訓(xùn)練好的模型預(yù)測出蒸汽量。因為預(yù)測值為連續(xù)型數(shù)值變量,且給定的數(shù)據(jù)都帶有標(biāo)簽,故此問題是典型的回歸預(yù)測問題

典型的回歸預(yù)測模型使用的算法包括:線性回歸,嶺回歸LASSO回歸,決策樹回歸梯度提升樹回歸

全代碼

一個典型的機(jī)器學(xué)習(xí)實戰(zhàn)算法基本包括 1) 數(shù)據(jù)處理,2) 特征選取、優(yōu)化,和 3) 模型選取、驗證、優(yōu)化。 因為 “數(shù)據(jù)和特征決定了機(jī)器學(xué)習(xí)的上限,而模型和算法知識逼近這個上限而已?!?/strong> 所以在解決一個機(jī)器學(xué)習(xí)問題時大部分時間都會花在數(shù)據(jù)處理和特征優(yōu)化上。
大家最好在jupyter notebook上一段一段地跑下面的代碼,加深理解。
機(jī)器學(xué)習(xí)的基本知識可以康康我的其他文章哦 好康的。

導(dǎo)入包

import warnings
warnings.filterwarnings("ignore")
import matplotlib.pyplot as plt
plt.rcParams.update({'figure.max_open_warning': 0})
import seaborn as sns

# modelling
import pandas as pd
import numpy as np
from scipy import stats
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV, RepeatedKFold, cross_val_score,cross_val_predict,KFold
from sklearn.metrics import make_scorer,mean_squared_error
from sklearn.linear_model import LinearRegression, Lasso, Ridge, ElasticNet
from sklearn.svm import LinearSVR, SVR
from sklearn.neighbors import KNeighborsRegressor
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor,AdaBoostRegressor
from xgboost import XGBRegressor
from sklearn.preprocessing import PolynomialFeatures,MinMaxScaler,StandardScaler

導(dǎo)入數(shù)據(jù)

#load_dataset
with open("./zhengqi_train.txt")  as fr:
    data_train=pd.read_table(fr,sep="t")
with open("./zhengqi_test.txt") as fr_test:
    data_test=pd.read_table(fr_test,sep="t")

合并數(shù)據(jù)

#merge train_set and test_set
data_train["oringin"]="train"
data_test["oringin"]="test"
data_all=pd.concat([data_train,data_test],axis=0,ignore_index=True)

刪除相關(guān)特征

data_all.drop(["V5","V9","V11","V17","V22","V28"],axis=1,inplace=True)

數(shù)據(jù)最大最小歸一化

# normalise numeric columns
cols_numeric=list(data_all.columns)
cols_numeric.remove("oringin")
def scale_minmax(col):
    return (col-col.min())/(col.max()-col.min())
scale_cols = [col for col in cols_numeric if col!='target']
data_all[scale_cols] = data_all[scale_cols].apply(scale_minmax,axis=0)

畫圖:探查特征和標(biāo)簽相關(guān)信息

#Check effect of Box-Cox transforms on distributions of continuous variables

fcols = 6
frows = len(cols_numeric)-1
plt.figure(figsize=(4*fcols,4*frows))
i=0

for var in cols_numeric:
    if var!='target':
        dat = data_all[[var, 'target']].dropna()
        
        i+=1
        plt.subplot(frows,fcols,i)
        sns.distplot(dat[var] , fit=stats.norm);
        plt.title(var+' Original')
        plt.xlabel('')
        
        i+=1
        plt.subplot(frows,fcols,i)
        _=stats.probplot(dat[var], plot=plt)
        plt.title('skew='+'{:.4f}'.format(stats.skew(dat[var])))
        plt.xlabel('')
        plt.ylabel('')
        
        i+=1
        plt.subplot(frows,fcols,i)
        plt.plot(dat[var], dat['target'],'.',alpha=0.5)
        plt.title('corr='+'{:.2f}'.format(np.corrcoef(dat[var], dat['target'])[0][1]))
 
        i+=1
        plt.subplot(frows,fcols,i)
        trans_var, lambda_var = stats.boxcox(dat[var].dropna()+1)
        trans_var = scale_minmax(trans_var)      
        sns.distplot(trans_var , fit=stats.norm);
        plt.title(var+' Tramsformed')
        plt.xlabel('')
        
        i+=1
        plt.subplot(frows,fcols,i)
        _=stats.probplot(trans_var, plot=plt)
        plt.title('skew='+'{:.4f}'.format(stats.skew(trans_var)))
        plt.xlabel('')
        plt.ylabel('')
        
        i+=1
        plt.subplot(frows,fcols,i)
        plt.plot(trans_var, dat['target'],'.',alpha=0.5)
        plt.title('corr='+'{:.2f}'.format(np.corrcoef(trans_var,dat['target'])[0][1]))

在這里插入圖片描述

對特征進(jìn)行Box-Cox變換,使其滿足正態(tài)性

Box-Cox變換是Box和Cox在1964年提出的一種廣義冪變換方法,是統(tǒng)計建模中常用的一種數(shù)據(jù)變換,用于連續(xù)的響應(yīng)變量不滿足正態(tài)分布的情況。Box-Cox變換之后,可以一定程度上減小不可觀測的誤差和預(yù)測變量的相關(guān)性。Box-Cox變換的主要特點是引入一個參數(shù),通過數(shù)據(jù)本身估計該參數(shù)進(jìn)而確定應(yīng)采取的數(shù)據(jù)變換形式,Box-Cox變換可以明顯地改善數(shù)據(jù)的正態(tài)性、對稱性和方差相等性,對許多實際數(shù)據(jù)都是行之有效的。

cols_transform=data_all.columns[0:-2]
for col in cols_transform:   
    # transform column
    data_all.loc[:,col], _ = stats.boxcox(data_all.loc[:,col]+1)

標(biāo)簽數(shù)據(jù)統(tǒng)計轉(zhuǎn)換后的數(shù)據(jù),計算分位數(shù)畫圖展示(基于正態(tài)分布)

print(data_all.target.describe())

plt.figure(figsize=(12,4))
plt.subplot(1,2,1)
sns.distplot(data_all.target.dropna() , fit=stats.norm);
plt.subplot(1,2,2)
_=stats.probplot(data_all.target.dropna(), plot=plt)

在這里插入圖片描述

標(biāo)簽數(shù)據(jù)對數(shù)變換數(shù)據(jù),使數(shù)據(jù)更符合正態(tài),并畫圖展示

#Log Transform SalePrice to improve normality
sp = data_train.target
data_train.target1 =np.power(1.5,sp)
print(data_train.target1.describe())

plt.figure(figsize=(12,4))
plt.subplot(1,2,1)
sns.distplot(data_train.target1.dropna(),fit=stats.norm);
plt.subplot(1,2,2)
_=stats.probplot(data_train.target1.dropna(), plot=plt)

在這里插入圖片描述

獲取訓(xùn)練和測試數(shù)據(jù)

# function to get training samples
def get_training_data():
    # extract training samples
    from sklearn.model_selection import train_test_split
    df_train = data_all[data_all["oringin"]=="train"]
    df_train["label"]=data_train.target1
    # split SalePrice and features
    y = df_train.target
    X = df_train.drop(["oringin","target","label"],axis=1)
    X_train,X_valid,y_train,y_valid=train_test_split(X,y,test_size=0.3,random_state=100)
    return X_train,X_valid,y_train,y_valid

# extract test data (without SalePrice)
def get_test_data():
    df_test = data_all[data_all["oringin"]=="test"].reset_index(drop=True)
    return df_test.drop(["oringin","target"],axis=1)

評分函數(shù)

from sklearn.metrics import make_scorer
# metric for evaluation
def rmse(y_true, y_pred):
    diff = y_pred - y_true
    sum_sq = sum(diff**2)    
    n = len(y_pred)   
    
    return np.sqrt(sum_sq/n)
def mse(y_ture,y_pred):
    return mean_squared_error(y_ture,y_pred)

# scorer to be used in sklearn model fitting
rmse_scorer = make_scorer(rmse, greater_is_better=False)
mse_scorer = make_scorer(mse, greater_is_better=False)

獲取異常數(shù)據(jù),并畫圖

# function to detect outliers based on the predictions of a model
def find_outliers(model, X, y, sigma=3):

    # predict y values using model
    try:
        y_pred = pd.Series(model.predict(X), index=y.index)
    # if predicting fails, try fitting the model first
    except:
        model.fit(X,y)
        y_pred = pd.Series(model.predict(X), index=y.index)
        
    # calculate residuals between the model prediction and true y values
    resid = y - y_pred
    mean_resid = resid.mean()
    std_resid = resid.std()

    # calculate z statistic, define outliers to be where |z|>sigma
    z = (resid - mean_resid)/std_resid    
    outliers = z[abs(z)>sigma].index
    
    # print and plot the results
    print('R2=',model.score(X,y))
    print('rmse=',rmse(y, y_pred))
    print("mse=",mean_squared_error(y,y_pred))
    print('---------------------------------------')

    print('mean of residuals:',mean_resid)
    print('std of residuals:',std_resid)
    print('---------------------------------------')

    print(len(outliers),'outliers:')
    print(outliers.tolist())

    plt.figure(figsize=(15,5))
    ax_131 = plt.subplot(1,3,1)
    plt.plot(y,y_pred,'.')
    plt.plot(y.loc[outliers],y_pred.loc[outliers],'ro')
    plt.legend(['Accepted','Outlier'])
    plt.xlabel('y')
    plt.ylabel('y_pred');

    ax_132=plt.subplot(1,3,2)
    plt.plot(y,y-y_pred,'.')
    plt.plot(y.loc[outliers],y.loc[outliers]-y_pred.loc[outliers],'ro')
    plt.legend(['Accepted','Outlier'])
    plt.xlabel('y')
    plt.ylabel('y - y_pred');

    ax_133=plt.subplot(1,3,3)
    z.plot.hist(bins=50,ax=ax_133)
    z.loc[outliers].plot.hist(color='r',bins=50,ax=ax_133)
    plt.legend(['Accepted','Outlier'])
    plt.xlabel('z')
    
    plt.savefig('outliers.png')
    
    return outliers
# get training data
from sklearn.linear_model import Ridge
X_train, X_valid,y_train,y_valid = get_training_data()
test=get_test_data()

# find and remove outliers using a Ridge model
outliers = find_outliers(Ridge(), X_train, y_train)

# permanently remove these outliers from the data
#df_train = data_all[data_all["oringin"]=="train"]
#df_train["label"]=data_train.target1
#df_train=df_train.drop(outliers)
X_outliers=X_train.loc[outliers]
y_outliers=y_train.loc[outliers]
X_t=X_train.drop(outliers)
y_t=y_train.drop(outliers)

在這里插入圖片描述

使用刪除異常的數(shù)據(jù)進(jìn)行模型訓(xùn)練

def get_trainning_data_omitoutliers():
    y1=y_t.copy()
    X1=X_t.copy()
    return X1,y1

采用網(wǎng)格搜索訓(xùn)練模型

from sklearn.preprocessing import StandardScaler
def train_model(model, param_grid=[], X=[], y=[], 
                splits=5, repeats=5):

    # get unmodified training data, unless data to use already specified
    if len(y)==0:
        X,y = get_trainning_data_omitoutliers()
        #poly_trans=PolynomialFeatures(degree=2)
        #X=poly_trans.fit_transform(X)
        #X=MinMaxScaler().fit_transform(X)
    
    # create cross-validation method
    rkfold = RepeatedKFold(n_splits=splits, n_repeats=repeats)
    
    # perform a grid search if param_grid given
    if len(param_grid)>0:
        # setup grid search parameters
        gsearch = GridSearchCV(model, param_grid, cv=rkfold,
                               scoring="neg_mean_squared_error",
                               verbose=1, return_train_score=True)

        # search the grid
        gsearch.fit(X,y)

        # extract best model from the grid
        model = gsearch.best_estimator_        
        best_idx = gsearch.best_index_

        # get cv-scores for best model
        grid_results = pd.DataFrame(gsearch.cv_results_)       
        cv_mean = abs(grid_results.loc[best_idx,'mean_test_score'])
        cv_std = grid_results.loc[best_idx,'std_test_score']

    # no grid search, just cross-val score for given model    
    else:
        grid_results = []
        cv_results = cross_val_score(model, X, y, scoring="neg_mean_squared_error", cv=rkfold)
        cv_mean = abs(np.mean(cv_results))
        cv_std = np.std(cv_results)
    
    # combine mean and std cv-score in to a pandas series
    cv_score = pd.Series({'mean':cv_mean,'std':cv_std})

    # predict y using the fitted model
    y_pred = model.predict(X)
    
    # print stats on model performance         
    print('----------------------')
    print(model)
    print('----------------------')
    print('score=',model.score(X,y))
    print('rmse=',rmse(y, y_pred))
    print('mse=',mse(y, y_pred))
    print('cross_val: mean=',cv_mean,', std=',cv_std)
    
    # residual plots
    y_pred = pd.Series(y_pred,index=y.index)
    resid = y - y_pred
    mean_resid = resid.mean()
    std_resid = resid.std()
    z = (resid - mean_resid)/std_resid    
    n_outliers = sum(abs(z)>3)
    
    plt.figure(figsize=(15,5))
    ax_131 = plt.subplot(1,3,1)
    plt.plot(y,y_pred,'.')
    plt.xlabel('y')
    plt.ylabel('y_pred');
    plt.title('corr = {:.3f}'.format(np.corrcoef(y,y_pred)[0][1]))
    ax_132=plt.subplot(1,3,2)
    plt.plot(y,y-y_pred,'.')
    plt.xlabel('y')
    plt.ylabel('y - y_pred');
    plt.title('std resid = {:.3f}'.format(std_resid))
    
    ax_133=plt.subplot(1,3,3)
    z.plot.hist(bins=50,ax=ax_133)
    plt.xlabel('z')
    plt.title('{:.0f} samples with z>3'.format(n_outliers))

    return model, cv_score, grid_results
# places to store optimal models and scores
opt_models = dict()
score_models = pd.DataFrame(columns=['mean','std'])

# no. k-fold splits
splits=5
# no. k-fold iterations
repeats=5

嶺回歸

model = 'Ridge'

opt_models[model] = Ridge()
alph_range = np.arange(0.25,6,0.25)
param_grid = {'alpha': alph_range}

opt_models[model],cv_score,grid_results = train_model(opt_models[model], param_grid=param_grid, 
                                              splits=splits, repeats=repeats)

cv_score.name = model
score_models = score_models.append(cv_score)

plt.figure()
plt.errorbar(alph_range, abs(grid_results['mean_test_score']),
             abs(grid_results['std_test_score'])/np.sqrt(splits*repeats))
plt.xlabel('alpha')
plt.ylabel('score')

在這里插入圖片描述

Lasso回歸

model = 'Lasso'

opt_models[model] = Lasso()
alph_range = np.arange(1e-4,1e-3,4e-5)
param_grid = {'alpha': alph_range}

opt_models[model], cv_score, grid_results = train_model(opt_models[model], param_grid=param_grid, 
                                              splits=splits, repeats=repeats)

cv_score.name = model
score_models = score_models.append(cv_score)

plt.figure()
plt.errorbar(alph_range, abs(grid_results['mean_test_score']),abs(grid_results['std_test_score'])/np.sqrt(splits*repeats))
plt.xlabel('alpha')
plt.ylabel('score')

在這里插入圖片描述

ElasticNet 回歸

model ='ElasticNet'
opt_models[model] = ElasticNet()

param_grid = {'alpha': np.arange(1e-4,1e-3,1e-4),
              'l1_ratio': np.arange(0.1,1.0,0.1),
              'max_iter':[100000]}

opt_models[model], cv_score, grid_results = train_model(opt_models[model], param_grid=param_grid, 
                                              splits=splits, repeats=1)

cv_score.name = model
score_models = score_models.append(cv_score)

在這里插入圖片描述

SVR回歸

model='LinearSVR'
opt_models[model] = LinearSVR()

crange = np.arange(0.1,1.0,0.1)
param_grid = {'C':crange,
             'max_iter':[1000]}

opt_models[model], cv_score, grid_results = train_model(opt_models[model], param_grid=param_grid, 
                                              splits=splits, repeats=repeats)


cv_score.name = model
score_models = score_models.append(cv_score)

plt.figure()
plt.errorbar(crange, abs(grid_results['mean_test_score']),abs(grid_results['std_test_score'])/np.sqrt(splits*repeats))
plt.xlabel('C')
plt.ylabel('score')

在這里插入圖片描述

K近鄰

model = 'KNeighbors'
opt_models[model] = KNeighborsRegressor()

param_grid = {'n_neighbors':np.arange(3,11,1)}

opt_models[model], cv_score, grid_results = train_model(opt_models[model], param_grid=param_grid, 
                                              splits=splits, repeats=1)

cv_score.name = model
score_models = score_models.append(cv_score)

plt.figure()
plt.errorbar(np.arange(3,11,1), abs(grid_results['mean_test_score']),abs(grid_results['std_test_score'])/np.sqrt(splits*1))
plt.xlabel('n_neighbors')
plt.ylabel('score')

在這里插入圖片描述

GBDT 模型

model = 'GradientBoosting'
opt_models[model] = GradientBoostingRegressor()

param_grid = {'n_estimators':[150,250,350],
              'max_depth':[1,2,3],
              'min_samples_split':[5,6,7]}

opt_models[model], cv_score, grid_results = train_model(opt_models[model], param_grid=param_grid, 
                                              splits=splits, repeats=1)

cv_score.name = model
score_models = score_models.append(cv_score)

在這里插入圖片描述

XGB模型

model = 'XGB'
opt_models[model] = XGBRegressor()

param_grid = {'n_estimators':[100,200,300,400,500],
              'max_depth':[1,2,3],
             }

opt_models[model], cv_score,grid_results = train_model(opt_models[model], param_grid=param_grid, 
                                              splits=splits, repeats=1)

cv_score.name = model
score_models = score_models.append(cv_score)

在這里插入圖片描述

隨機(jī)森林模型

model = 'RandomForest'
opt_models[model] = RandomForestRegressor()

param_grid = {'n_estimators':[100,150,200],
              'max_features':[8,12,16,20,24],
              'min_samples_split':[2,4,6]}

opt_models[model], cv_score, grid_results = train_model(opt_models[model], param_grid=param_grid, 
                                              splits=5, repeats=1)

cv_score.name = model
score_models = score_models.append(cv_score)

在這里插入圖片描述

模型預(yù)測–多模型Bagging

def model_predict(test_data,test_y=[],stack=False):
    #poly_trans=PolynomialFeatures(degree=2)
    #test_data1=poly_trans.fit_transform(test_data)
    #test_data=MinMaxScaler().fit_transform(test_data)
    i=0
    y_predict_total=np.zeros((test_data.shape[0],))
    for model in opt_models.keys():
        if model!="LinearSVR" and model!="KNeighbors":
            y_predict=opt_models[model].predict(test_data)
            y_predict_total+=y_predict
            i+=1
        if len(test_y)>0:
            print("{}_mse:".format(model),mean_squared_error(y_predict,test_y))
    y_predict_mean=np.round(y_predict_total/i,3)
    if len(test_y)>0:
        print("mean_mse:",mean_squared_error(y_predict_mean,test_y))
    else:
        y_predict_mean=pd.Series(y_predict_mean)
        return y_predict_mean

Bagging預(yù)測

model_predict(X_valid,y_valid)

在這里插入圖片描述

模型融合Stacking

模型融合,即先產(chǎn)生一組個體模型,再用某種策略將它們結(jié)合起來,以加強(qiáng)模型效果。
分析表明,隨著集成中個體模型數(shù)量T增加,集成模型的錯誤率將呈指數(shù)級下降,最終趨于0。通過融合可以達(dá)到取長補(bǔ)短的效果,綜合個體模型的優(yōu)勢能降低預(yù)測誤差、優(yōu)化整體模型的性能。而且個體模型的準(zhǔn)確率越高,多樣性越大,模型融合的提升效果就越好!

模型融合stacking簡單示例

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import itertools
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier

##主要使用pip install mlxtend安裝mlxtend
from mlxtend.classifier import EnsembleVoteClassifier
from mlxtend.data import iris_data
from mlxtend.plotting import plot_decision_regions
%matplotlib inline

# Initializing Classifiers
clf1 = LogisticRegression(random_state=0)
clf2 = RandomForestClassifier(random_state=0)
clf3 = SVC(random_state=0, probability=True)
eclf = EnsembleVoteClassifier(clfs=[clf1, clf2, clf3], weights=[2, 1, 1], voting='soft')

# Loading some example data
X, y = iris_data()
X = X[:,[0, 2]]

# Plotting Decision Regions
gs = gridspec.GridSpec(2, 2)
fig = plt.figure(figsize=(10, 8))

for clf, lab, grd in zip([clf1, clf2, clf3, eclf],
                         ['Logistic Regression', 'Random Forest', 'RBF kernel SVM', 'Ensemble'],
                         itertools.product([0, 1], repeat=2)):
    clf.fit(X, y)
    ax = plt.subplot(gs[grd[0], grd[1]])
    fig = plot_decision_regions(X=X, y=y, clf=clf, legend=2)
    plt.title(lab)
plt.show()

在這里插入圖片描述

工業(yè)蒸汽多模型融合stacking

from sklearn.model_selection import train_test_split
import pandas as pd
import numpy as np
from scipy import sparse
import xgboost
import lightgbm

from sklearn.ensemble import RandomForestRegressor,AdaBoostRegressor,GradientBoostingRegressor,ExtraTreesRegressor
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

def stacking_reg(clf,train_x,train_y,test_x,clf_name,kf,label_split=None):
    train=np.zeros((train_x.shape[0],1))
    test=np.zeros((test_x.shape[0],1))
    test_pre=np.empty((folds,test_x.shape[0],1))
    cv_scores=[]
    for i,(train_index,test_index) in enumerate(kf.split(train_x,label_split)):       
        tr_x=train_x[train_index]
        tr_y=train_y[train_index]
        te_x=train_x[test_index]
        te_y = train_y[test_index]
        if clf_name in ["rf","ada","gb","et","lr","lsvc","knn"]:
            clf.fit(tr_x,tr_y)
            pre=clf.predict(te_x).reshape(-1,1)
            train[test_index]=pre
            test_pre[i,:]=clf.predict(test_x).reshape(-1,1)
            cv_scores.append(mean_squared_error(te_y, pre))
        elif clf_name in ["xgb"]:
            train_matrix = clf.DMatrix(tr_x, label=tr_y, missing=-1)
            test_matrix = clf.DMatrix(te_x, label=te_y, missing=-1)
            z = clf.DMatrix(test_x, label=te_y, missing=-1)
            params = {'booster': 'gbtree',
                      'eval_metric': 'rmse',
                      'gamma': 1,
                      'min_child_weight': 1.5,
                      'max_depth': 5,
                      'lambda': 10,
                      'subsample': 0.7,
                      'colsample_bytree': 0.7,
                      'colsample_bylevel': 0.7,
                      'eta': 0.03,
                      'tree_method': 'exact',
                      'seed': 2017,
                      'nthread': 12
                      }
            num_round = 10000
            early_stopping_rounds = 100
            watchlist = [(train_matrix, 'train'),
                         (test_matrix, 'eval')
                         ]
            if test_matrix:
                model = clf.train(params, train_matrix, num_boost_round=num_round,evals=watchlist,
                                  early_stopping_rounds=early_stopping_rounds
                                  )
                pre= model.predict(test_matrix,ntree_limit=model.best_ntree_limit).reshape(-1,1)
                train[test_index]=pre
                test_pre[i, :]= model.predict(z, ntree_limit=model.best_ntree_limit).reshape(-1,1)
                cv_scores.append(mean_squared_error(te_y, pre))

        elif clf_name in ["lgb"]:
            train_matrix = clf.Dataset(tr_x, label=tr_y)
            test_matrix = clf.Dataset(te_x, label=te_y)
            #z = clf.Dataset(test_x, label=te_y)
            #z=test_x
            params = {
                      'boosting_type': 'gbdt',
                      'objective': 'regression_l2',
                      'metric': 'mse',
                      'min_child_weight': 1.5,
                      'num_leaves': 2**5,
                      'lambda_l2': 10,
                      'subsample': 0.7,
                      'colsample_bytree': 0.7,
                      'colsample_bylevel': 0.7,
                      'learning_rate': 0.03,
                      'tree_method': 'exact',
                      'seed': 2017,
                      'nthread': 12,
                      'silent': True,
                      }
            num_round = 10000
            early_stopping_rounds = 100
            if test_matrix:
                model = clf.train(params, train_matrix,num_round,valid_sets=test_matrix,
                                  early_stopping_rounds=early_stopping_rounds
                                  )
                pre= model.predict(te_x,num_iteration=model.best_iteration).reshape(-1,1)
                train[test_index]=pre
                test_pre[i, :]= model.predict(test_x, num_iteration=model.best_iteration).reshape(-1,1)
                cv_scores.append(mean_squared_error(te_y, pre))
        else:
            raise IOError("Please add new clf.")
        print("%s now score is:"%clf_name,cv_scores)
    test[:]=test_pre.mean(axis=0)
    print("%s_score_list:"%clf_name,cv_scores)
    print("%s_score_mean:"%clf_name,np.mean(cv_scores))
    return train.reshape(-1,1),test.reshape(-1,1)


模型融合stacking基學(xué)習(xí)器


def rf_reg(x_train, y_train, x_valid, kf, label_split=None):
    randomforest = RandomForestRegressor(n_estimators=600, max_depth=20, n_jobs=-1, random_state=2017, max_features="auto",verbose=1)
    rf_train, rf_test = stacking_reg(randomforest, x_train, y_train, x_valid, "rf", kf, label_split=label_split)
    return rf_train, rf_test,"rf_reg"

def ada_reg(x_train, y_train, x_valid, kf, label_split=None):
    adaboost = AdaBoostRegressor(n_estimators=30, random_state=2017, learning_rate=0.01)
    ada_train, ada_test = stacking_reg(adaboost, x_train, y_train, x_valid, "ada", kf, label_split=label_split)
    return ada_train, ada_test,"ada_reg"

def gb_reg(x_train, y_train, x_valid, kf, label_split=None):
    gbdt = GradientBoostingRegressor(learning_rate=0.04, n_estimators=100, subsample=0.8, random_state=2017,max_depth=5,verbose=1)
    gbdt_train, gbdt_test = stacking_reg(gbdt, x_train, y_train, x_valid, "gb", kf, label_split=label_split)
    return gbdt_train, gbdt_test,"gb_reg"

def et_reg(x_train, y_train, x_valid, kf, label_split=None):
    extratree = ExtraTreesRegressor(n_estimators=600, max_depth=35, max_features="auto", n_jobs=-1, random_state=2017,verbose=1)
    et_train, et_test = stacking_reg(extratree, x_train, y_train, x_valid, "et", kf, label_split=label_split)
    return et_train, et_test,"et_reg"

def lr_reg(x_train, y_train, x_valid, kf, label_split=None):
    lr_reg=LinearRegression(n_jobs=-1)
    lr_train, lr_test = stacking_reg(lr_reg, x_train, y_train, x_valid, "lr", kf, label_split=label_split)
    return lr_train, lr_test, "lr_reg"

def xgb_reg(x_train, y_train, x_valid, kf, label_split=None):
    xgb_train, xgb_test = stacking_reg(xgboost, x_train, y_train, x_valid, "xgb", kf, label_split=label_split)
    return xgb_train, xgb_test,"xgb_reg"

def lgb_reg(x_train, y_train, x_valid, kf, label_split=None):
    lgb_train, lgb_test = stacking_reg(lightgbm, x_train, y_train, x_valid, "lgb", kf, label_split=label_split)
    return lgb_train, lgb_test,"lgb_reg"

模型融合stacking預(yù)測

def stacking_pred(x_train, y_train, x_valid, kf, clf_list, label_split=None, clf_fin="lgb", if_concat_origin=True):
    for k, clf_list in enumerate(clf_list):
        clf_list = [clf_list]
        column_list = []
        train_data_list=[]
        test_data_list=[]
        for clf in clf_list:
            train_data,test_data,clf_name=clf(x_train, y_train, x_valid, kf, label_split=label_split)
            train_data_list.append(train_data)
            test_data_list.append(test_data)
            column_list.append("clf_%s" % (clf_name))
    train = np.concatenate(train_data_list, axis=1)
    test = np.concatenate(test_data_list, axis=1)
    
    if if_concat_origin:
        train = np.concatenate([x_train, train], axis=1)
        test = np.concatenate([x_valid, test], axis=1)
    print(x_train.shape)
    print(train.shape)
    print(clf_name)
    print(clf_name in ["lgb"])
    if clf_fin in ["rf","ada","gb","et","lr","lsvc","knn"]:
        if clf_fin in ["rf"]:
            clf = RandomForestRegressor(n_estimators=600, max_depth=20, n_jobs=-1, random_state=2017, max_features="auto",verbose=1)
        elif clf_fin in ["ada"]:
            clf = AdaBoostRegressor(n_estimators=30, random_state=2017, learning_rate=0.01)
        elif clf_fin in ["gb"]:
            clf = GradientBoostingRegressor(learning_rate=0.04, n_estimators=100, subsample=0.8, random_state=2017,max_depth=5,verbose=1)
        elif clf_fin in ["et"]:
            clf = ExtraTreesRegressor(n_estimators=600, max_depth=35, max_features="auto", n_jobs=-1, random_state=2017,verbose=1)
        elif clf_fin in ["lr"]:
            clf = LinearRegression(n_jobs=-1)
        clf.fit(train, y_train)
        pre = clf.predict(test).reshape(-1,1)
        return pred
    elif clf_fin in ["xgb"]:
        clf = xgboost
        train_matrix = clf.DMatrix(train, label=y_train, missing=-1)
        test_matrix = clf.DMatrix(train, label=y_train, missing=-1)
        params = {'booster': 'gbtree',
                  'eval_metric': 'rmse',
                  'gamma': 1,
                  'min_child_weight': 1.5,
                  'max_depth': 5,
                  'lambda': 10,
                  'subsample': 0.7,
                  'colsample_bytree': 0.7,
                  'colsample_bylevel': 0.7,
                  'eta': 0.03,
                  'tree_method': 'exact',
                  'seed': 2017,
                  'nthread': 12
                  }
        num_round = 10000
        early_stopping_rounds = 100
        watchlist = [(train_matrix, 'train'),
                     (test_matrix, 'eval')
                     ]
        model = clf.train(params, train_matrix, num_boost_round=num_round,evals=watchlist,
                          early_stopping_rounds=early_stopping_rounds
                          )
        pre = model.predict(test,ntree_limit=model.best_ntree_limit).reshape(-1,1)
        return pre
    elif clf_fin in ["lgb"]:
        print(clf_name)
        clf = lightgbm
        train_matrix = clf.Dataset(train, label=y_train)
        test_matrix = clf.Dataset(train, label=y_train)
        params = {
                  'boosting_type': 'gbdt',
                  'objective': 'regression_l2',
                  'metric': 'mse',
                  'min_child_weight': 1.5,
                  'num_leaves': 2**5,
                  'lambda_l2': 10,
                  'subsample': 0.7,
                  'colsample_bytree': 0.7,
                  'colsample_bylevel': 0.7,
                  'learning_rate': 0.03,
                  'tree_method': 'exact',
                  'seed': 2017,
                  'nthread': 12,
                  'silent': True,
                  }
        num_round = 10000
        early_stopping_rounds = 100
        model = clf.train(params, train_matrix,num_round,valid_sets=test_matrix,
                          early_stopping_rounds=early_stopping_rounds
                          )
        print('pred')
        pre = model.predict(test,num_iteration=model.best_iteration).reshape(-1,1)
        print(pre)
        return pre

加載數(shù)據(jù)

# #load_dataset
with open("./zhengqi_train.txt")  as fr:
    data_train=pd.read_table(fr,sep="t")
with open("./zhengqi_test.txt") as fr_test:
    data_test=pd.read_table(fr_test,sep="t")

K折交叉驗證

from sklearn.model_selection import StratifiedKFold, KFold

folds = 5
seed = 1
kf = KFold(n_splits=5, shuffle=True, random_state=0)

訓(xùn)練集和測試集數(shù)據(jù)

x_train = data_train[data_test.columns].values
x_valid = data_test[data_test.columns].values
y_train = data_train['target'].values

使用lr_reg和lgb_reg進(jìn)行融合預(yù)測

clf_list = [lr_reg, lgb_reg]
#clf_list = [lr_reg, rf_reg]

##很容易過擬合
pred = stacking_pred(x_train, y_train, x_valid, kf, clf_list, label_split=None, clf_fin="lgb", if_concat_origin=True)

以上內(nèi)容和代碼全部來自于《阿里云天池大賽賽題解析(機(jī)器學(xué)習(xí)篇)》這本好書,十分推薦大家去閱讀原書!

推薦器件

更多器件
器件型號 數(shù)量 器件廠商 器件描述 數(shù)據(jù)手冊 ECAD模型 風(fēng)險等級 參考價格 更多信息
AFBR-5803ATQZ 1 Broadcom Limited Transceiver, 1270nm Min, 1380nm Max, 155Mbps(Tx), 155Mbps(Rx), ST Connector, SIP, Board/panel Mount, ROHS COMPLIANT, SIP-9

ECAD模型

下載ECAD模型
$25.4 查看
74HC165D,653 1 Nexperia 74HC165; 74HCT165 - 8-bit parallel-in/serial out shift register@en-us SOP 16-Pin

ECAD模型

下載ECAD模型
$0.46 查看
KSZ8863RLLI 1 Microchip Technology Inc DATACOM, LAN SWITCHING CIRCUIT, PQFP48

ECAD模型

下載ECAD模型
$5.09 查看

相關(guān)推薦

電子產(chǎn)業(yè)圖譜