上一篇文章我們給大家講解了基于瑞芯微rk3568平臺芯片hym8563驅(qū)動的移植,本文給大家詳細(xì)講解Linux內(nèi)核的時間子系統(tǒng)。
一、Linux 時間操作命令 :date、hwclock
Linux時間有兩個: 系統(tǒng)時間(Wall Time), RTC時間
。
1)系統(tǒng)時間(WT):
由Linux系統(tǒng)軟件維持的時間,通過Linux命令date查看:
rk3568_r:/ # date
Wed Sep 21 03:05:21 GMT 2022
獲取到的就是系統(tǒng)時間。
2)RTC時間:
這個時間來自我們設(shè)備上的RTC芯片,通過Linux命令hwclock 可以讀取:
rk3568_r:/ # hwclock
Wed Sep 21 03:05:24 2022 0.000000 seconds
我們通過man查看date和hwclock的介紹:
命令說明
1)date
DESCRIPTION
Display the current time in the given FORMAT, or set the system date.
2)hwclock
DESCRIPTION
hwclock is a tool for accessing the Hardware Clock. It can: display the Hardware
Clock time; set the Hardware Clock to a specified time; set the Hardware Clock from
the System Clock; set the System Clock from the Hardware Clock; compensate for
Hardware Clock drift; correct the System Clock timescale; set the kernel's time‐
zone, NTP timescale, and epoch (Alpha only); compare the System and Hardware
Clocks; and predict future Hardware Clock values based on its drift rate.
Since v2.26 important changes were made to the --hctosys function and the --direc‐
tisa option, and a new option --update-drift was added. See their respective
descriptions below.
接下來,通過代碼看下兩者的關(guān)系。
二、RTC時間框架
框架如圖:
從該架構(gòu)可得:
Hardware:提供時間信息(time&alarm),通過一定的接口(比如I2C)和RTC Driver進(jìn)行交互
Driver: 完成硬件的訪問功能,提供訪問接口,以驅(qū)動的形式駐留在系統(tǒng)
class.c:驅(qū)動注冊方式由class.c:文件提供。驅(qū)動注冊成功后會構(gòu)建rtc_device結(jié)構(gòu)體表征的rtc設(shè)備,并把rtc芯片的操作方式存放到rtc設(shè)備的ops成員中
interface.c:文件屏蔽硬件相關(guān)的細(xì)節(jié),向上提供統(tǒng)一的獲取/設(shè)置時間或Alarm的接口
rtc-lib.c:文件提供通用的時間操作函數(shù),如rtc_time_to_tm、rtc_valid_tm等
rtc-dev.c:文件在/dev/目錄下創(chuàng)建設(shè)備節(jié)點供應(yīng)用層訪問,如open、read、ioctl等,訪問方式填充到file_operations結(jié)構(gòu)體中
hctosys.c/rtc-sys.c/rtc-proc.c:將硬件時鐘寫給 wall time
下面我們從底層往上層來一步步分析。
1、rtc_class_ops 填充
驅(qū)動主要工作是填充 rtc_class_ops結(jié)構(gòu)體,結(jié)構(gòu)體描述了RTC芯片能夠提供的所有操作方式:
struct rtc_class_ops {
int (*open)(struct device *);
void (*release)(struct device *);
int (*ioctl)(struct device *, unsigned int, unsigned long);
int (*read_time)(struct device *, struct rtc_time *);
int (*set_time)(struct device *, struct rtc_time *);
int (*read_alarm)(struct device *, struct rtc_wkalrm *);
int (*set_alarm)(struct device *, struct rtc_wkalrm *);
int (*proc)(struct device *, struct seq_file *);
int (*set_mmss)(struct device *, unsigned long secs);
int (*read_callback)(struct device *, int data);
int (*alarm_irq_enable)(struct device *, unsigned int enabled);
};
實現(xiàn):
static const struct rtc_class_ops hym8563_rtc_ops = {
.read_time = hym8563_rtc_read_time,
.set_time = hym8563_rtc_set_time,
.alarm_irq_enable = hym8563_rtc_alarm_irq_enable,
.read_alarm = hym8563_rtc_read_alarm,
.set_alarm = hym8563_rtc_set_alarm,
};
注冊:
hym8563->rtc = devm_rtc_device_register(&client->dev, client->name,
&hym8563_rtc_ops, THIS_MODULE);
成功的話log:
[ 0.758774] hym8563_probe()---565----
[ 0.760651] rtc-hym8563 5-0051: rtc information is invalid
[ 0.761666] hym8563_rtc_read_time()---115----1--
[ 0.761681] hym8563_rtc_set_time()---129----1--
[ 0.764235] hym8563_rtc_read_time()---115----1--
[ 0.766425] hym8563_rtc_read_time()---115----1--
[ 0.767439] hym8563_rtc_read_time()---115----1--
[ 0.767619] rtc-hym8563 5-0051: rtc core: registered hym8563 as rtc0
[ 0.768634] hym8563_rtc_read_time()---115----1--
[ 0.768661] rtc-hym8563 5-0051: setting system clock to 2021-01-01 12:00:00 UTC (1609502400)
從log可得 5-0051: 5表示I2C通道5,0051表示從設(shè)備地址 rtc0 :注冊的rtc設(shè)備為rtc0
2、class.c和RTC驅(qū)動注冊
class.c文件在RTC驅(qū)動注冊之前開始得到運(yùn)行:
static int __init rtc_init(void)
{
rtc_class = class_create(THIS_MODULE, "rtc");
rtc_class->suspend = rtc_suspend;
rtc_class->resume = rtc_resume;
rtc_dev_init();
rtc_sysfs_init(rtc_class);
return 0;
}
subsys_initcall(rtc_init);
函數(shù)功能:
4、rtc_sysfs_init():rtc類具有的device_attribute屬性
3、RTC驅(qū)動注冊函數(shù)devm_rtc_device_register():
drivers/class.c
struct rtc_device *devm_rtc_device_register(struct device *dev,
const char *name,
const struct rtc_class_ops *ops,
struct module *owner)
{
struct rtc_device **ptr, *rtc;
ptr = devres_alloc(devm_rtc_device_release, sizeof(*ptr), GFP_KERNEL);
if (!ptr)
return ERR_PTR(-ENOMEM);
rtc = rtc_device_register(name, dev, ops, owner);
if (!IS_ERR(rtc)) {
*ptr = rtc;
devres_add(dev, ptr);
} else {
devres_free(ptr);
}
return rtc;
}
rtc_device_register()定義如下
struct rtc_device *rtc_device_register(const char *name, struct device *dev,
const struct rtc_class_ops *ops,
struct module *owner)
{
struct rtc_device *rtc;
struct rtc_wkalrm alrm;
int id, err;
// 1、Linux支持多個RTC設(shè)備,所以需要為每一個設(shè)備分配一個ID
// 對應(yīng)與/dev/rtc0,/dev/rtc1,,,/dev/rtcN
id = ida_simple_get(&rtc_ida, 0, 0, GFP_KERNEL);
// 2、創(chuàng)建rtc_device設(shè)備(對象)并執(zhí)行初始化
rtc = kzalloc(sizeof(struct rtc_device), GFP_KERNEL);
rtc->id = id;
rtc->ops = ops; // 2.1 對應(yīng)RTC驅(qū)動填充的test_rtc_ops
rtc->owner = owner;
rtc->irq_freq = 1;
rtc->max_user_freq = 64;
rtc->dev.parent = dev;
rtc->dev.class = rtc_class;// 2.2 rtc_init()創(chuàng)建的rtc_class
rtc->dev.release = rtc_device_release;
// 2.3 rtc設(shè)備中相關(guān)鎖、等待隊列的初始化
mutex_init(&rtc->ops_lock);
spin_lock_init(&rtc->irq_lock);
spin_lock_init(&rtc->irq_task_lock);
init_waitqueue_head(&rtc->irq_queue);
// 2.4 Init timerqueue:我們都知道,手機(jī)等都是可以設(shè)置多個鬧鐘的
timerqueue_init_head(&rtc->timerqueue);
INIT_WORK(&rtc->irqwork, rtc_timer_do_work);
// 2.5 Init aie timer:alarm interrupt enable,RTC鬧鐘中斷
rtc_timer_init(&rtc->aie_timer, rtc_aie_update_irq, (void *)rtc);
// 2.6 Init uie timer:update interrupt,RTC更新中斷
rtc_timer_init(&rtc->uie_rtctimer, rtc_uie_update_irq, (void *)rtc);
/* Init pie timer:periodic interrupt,RTC周期性中斷 */
hrtimer_init(&rtc->pie_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
rtc->pie_timer.function = rtc_pie_update_irq;
rtc->pie_enabled = 0;
/* Check to see if there is an ALARM already set in hw */
err = __rtc_read_alarm(rtc, &alrm);
// 3、如果RTC芯片中設(shè)置了有效的Alarm,則初始化:加入到rtc->timerqueue隊列中
if (!err && !rtc_valid_tm(&alrm.time))
rtc_initialize_alarm(rtc, &alrm);
// 4、根據(jù)name參數(shù)設(shè)置rtc的name域
strlcpy(rtc->name, name, RTC_DEVICE_NAME_SIZE);
// 5、設(shè)置rtc的dev成員中的name域
dev_set_name(&rtc->dev, "rtc%d", id);
// 6、/dev/rtc0的rtc作為字符設(shè)備進(jìn)行初始化
// rtc_dev_prepare-->cdev_init(&rtc->char_dev, &rtc_dev_fops);
rtc_dev_prepare(rtc);
// 7、添加rtc設(shè)備到系統(tǒng)
err = device_register(&rtc->dev);
// 8、rtc設(shè)備作為字符設(shè)備添加到系統(tǒng)
// rtc_dev_add_devicec-->dev_add(&rtc->char_dev, rtc->dev.devt, 1)
// 然后就存在/dev/rtc0了
rtc_dev_add_device(rtc);
rtc_sysfs_add_device(rtc);
// 9、/proc/rtc
rtc_proc_add_device(rtc);
dev_info(dev, "rtc core: registered %s as %sn",
rtc->name, dev_name(&rtc->dev));
return rtc;
}
有了 /dev/rtc0后,應(yīng)用層就可以通過 open/read/ioctl操作RTC設(shè)備了,對應(yīng)與內(nèi)核的file_operations:
static const struct file_operations rtc_dev_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.read = rtc_dev_read,
.poll = rtc_dev_poll,
.unlocked_ioctl = rtc_dev_ioctl,
.open = rtc_dev_open,
.release = rtc_dev_release,
.fasync = rtc_dev_fasync,
};
4、硬件抽象層interface.c
硬件抽象,即屏蔽具體的硬件細(xì)節(jié),為上層用戶提供統(tǒng)一的調(diào)用接口,使用者無需關(guān)心這些接口是怎么實現(xiàn)的。 以RTC訪問為例,抽象的實現(xiàn)位于interface.c文件,其實現(xiàn)基于class.c中創(chuàng)建的rtc_device設(shè)備。 實現(xiàn)原理,以rtc_set_time為例:
drivers/interface.c
int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
{
int err;
// 1、參數(shù)檢測
err = rtc_valid_tm(tm);
err = mutex_lock_interruptible(&rtc->ops_lock);
if (err)
return err;
// 2、調(diào)用rtc_device中ops結(jié)構(gòu)體的函數(shù)指針
// ops結(jié)構(gòu)體的函數(shù)指針已經(jīng)在RTC驅(qū)動中被賦值
if (!rtc->ops)
err = -ENODEV;
else if (rtc->ops->set_time)
err = rtc->ops->set_time(rtc->dev.parent, tm);
mutex_unlock(&rtc->ops_lock);
/* A timer might have just expired */
schedule_work(&rtc->irqwork);
return err;
}
5、rtc在sysfs文件系統(tǒng)中的呈現(xiàn)
之前曾建立過名為rtc的class:
rtc_class = class_create(THIS_MODULE, "rtc");
查看之:
# ls /sys/class/rtc/
rtc0
# ls -l /sys/class/rtc/
lrwxrwxrwx 1 root root 0 2021-01-01 12:00 rtc0 -> ../../devices/platform/fe5e0000.i2c/i2c-5/5-0051/rtc/rtc0
我們系統(tǒng)中只有一個RTC,所以編號為rtc0。
同時發(fā)現(xiàn)rtc0文件為指向/sys/devices/platform/fe5e0000.i2c/i2c-5/5-0051/rtc/rtc0的符號鏈接,
RTC芯片是I2C接口,所以rtc0掛載在I2C的總線上,總線控制器地址fe5e0000,控制器編號為5,RTC芯片作為slave端地址為0x51。
rtc0 設(shè)備屬性:
drivers/rtc-sysfs.c
void __init rtc_sysfs_init(struct class *rtc_class)
{
rtc_class->dev_attrs = rtc_attrs;
}
static struct attribute *rtc_attrs[] = {
&dev_attr_name.attr,
&dev_attr_date.attr,
&dev_attr_time.attr,
&dev_attr_since_epoch.attr,
&dev_attr_max_user_freq.attr,
&dev_attr_hctosys.attr,
NULL,
};
對應(yīng)文件系統(tǒng)中的文件節(jié)點:
rk3568_r:/sys/class/rtc # cd rtc0/
rk3568_r:/sys/class/rtc/rtc0 # ls -l
total 0
-r--r--r-- 1 root root 4096 2022-09-21 03:56 date
-r--r--r-- 1 root root 4096 2022-09-21 03:56 dev
lrwxrwxrwx 1 root root 0 2022-09-21 03:56 device -> ../../../5-0051
-r--r--r-- 1 root root 4096 2021-01-01 12:00 hctosys
-rw-r--r-- 1 root root 4096 2022-09-21 03:56 max_user_freq
-r--r--r-- 1 root root 4096 2022-09-21 03:56 name
drwxr-xr-x 2 root root 0 2021-01-01 12:00 power
-r--r--r-- 1 root root 4096 2022-09-21 03:56 since_epoch
lrwxrwxrwx 1 root root 0 2022-09-21 03:56 subsystem -> ../../../../../../../class/rtc
-r--r--r-- 1 root root 4096 2022-09-21 03:56 time
-rw-r--r-- 1 root root 4096 2021-01-01 12:00 uevent
-rw-r--r-- 1 root root 4096 2022-09-21 03:56 wakealarm
drwxr-xr-x 2 root root 0 2021-01-01 12:00 wakeup8
6、rtc在proc文件系統(tǒng)中的呈現(xiàn)
之前曾rtc0設(shè)備加入到了/proc
drivers/class.c
rtc_device_register()
{
--->rtc_proc_add_device(rtc);
}
void rtc_proc_add_device(struct rtc_device *rtc)
{
if (is_rtc_hctosys(rtc))
proc_create_data("driver/rtc", 0, NULL, &rtc_proc_fops, rtc);
}
查看之:
# cat /proc/driver/rtc
rtc_time : 03:59:11
rtc_date : 2022-09-21
alrm_time : 12:00:00
alrm_date : 2021-01-02
alarm_IRQ : no
alrm_pending : no
update IRQ enabled : no
periodic IRQ enabled : no
periodic IRQ frequency : 1
max user IRQ frequency : 64
24hr : yes
信息來源:
rtc_proc_fops
-->rtc_proc_open
-->rtc_proc_show
三、WT時間和RTC時間同步問題
1)
WT時間來自于RTC時間,流程是:
上電-->RTC驅(qū)動加載-->從RTC同步時間到WT時間
對應(yīng)驅(qū)動代碼:
hctosys.c (driversrtc)
static int __init rtc_hctosys(void)
{
......
struct timespec tv = {
.tv_nsec = NSEC_PER_SEC >> 1,
};
err = rtc_read_time(rtc, &tm);
err = do_settimeofday(&tv);
dev_info(rtc->dev.parent,
"setting system clock to "
"%d-%02d-%02d %02d:%02d:%02d UTC (%u)n",
tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday,
tm.tm_hour, tm.tm_min, tm.tm_sec,
(unsigned int) tv.tv_sec);
......
}
late_initcall(rtc_hctosys);
late_initcall說明系統(tǒng)在啟動流程的后面才會調(diào)用該函數(shù)去同步時間。
2)瑞芯微時間操作
在瑞芯微的系統(tǒng)中,安卓部分程序其實最終也是依賴**/sys/class/rtc/rtc0** 下的文件節(jié)點實現(xiàn)時間管理功能的。
安卓程序會通過AlarmImpl::getTime、AlarmImpl::setTime()方法來獲得和設(shè)置RTC時間:
frameworks/base/services/core/jni/com_android_server_AlarmManagerService.cpp
122 int AlarmImpl::getTime(int type, struct itimerspec *spec)
123 {
124 if (static_cast<size_t>(type) > ANDROID_ALARM_TYPE_COUNT) {
125 errno = EINVAL;
126 return -1;
127 }
128
129 return timerfd_gettime(fds[type], spec);
130 }
131
132 int AlarmImpl::setTime(struct timeval *tv)
133 {
134 struct rtc_time rtc;
135 struct tm tm, *gmtime_res;
136 int fd;
137 int res;
138
139 res = settimeofday(tv, NULL);
140 if (res < 0) {
141 ALOGV("settimeofday() failed: %sn", strerror(errno));
142 return -1;
143 }
144
145 if (rtc_id < 0) {
146 ALOGV("Not setting RTC because wall clock RTC was not found");
147 errno = ENODEV;
148 return -1;
149 }
150
151 android::String8 rtc_dev = String8::format("/dev/rtc%d", rtc_id);
152 fd = open(rtc_dev.string(), O_RDWR);
153 if (fd < 0) {
154 ALOGV("Unable to open %s: %sn", rtc_dev.string(), strerror(errno));
155 return res;
156 }
157
158 gmtime_res = gmtime_r(&tv->tv_sec, &tm);
159 if (!gmtime_res) {
160 ALOGV("gmtime_r() failed: %sn", strerror(errno));
161 res = -1;
162 goto done;
163 }
164
165 memset(&rtc, 0, sizeof(rtc));
166 rtc.tm_sec = tm.tm_sec;
167 rtc.tm_min = tm.tm_min;
168 rtc.tm_hour = tm.tm_hour;
169 rtc.tm_mday = tm.tm_mday;
170 rtc.tm_mon = tm.tm_mon;
171 rtc.tm_year = tm.tm_year;
172 rtc.tm_wday = tm.tm_wday;
173 rtc.tm_yday = tm.tm_yday;
174 rtc.tm_isdst = tm.tm_isdst;
175 res = ioctl(fd, RTC_SET_TIME, &rtc);
176 if (res < 0)
177 ALOGV("RTC_SET_TIME ioctl failed: %sn", strerror(errno));
178 done:
179 close(fd);
180 return res;
181 }
系統(tǒng)上電后,會先讀取文件hctosys中的值,來決定是否將RTC時間寫入到wall time:
255 static const char rtc_sysfs[] = "/sys/class/rtc";
256
257 static bool rtc_is_hctosys(unsigned int rtc_id)
258 {
259 android::String8 hctosys_path = String8::format("%s/rtc%u/hctosys",
260 rtc_sysfs, rtc_id);
261 FILE *file = fopen(hctosys_path.string(), "re");
262 if (!file) {
263 ALOGE("failed to open %s: %s", hctosys_path.string(), strerror(errno));
264 return false;
265 }
266
267 unsigned int hctosys;
268 bool ret = false;
269 int err = fscanf(file, "%u", &hctosys);
270 if (err == EOF)
271 ALOGE("failed to read from %s: %s", hctosys_path.string(),
272 strerror(errno));
273 else if (err == 0)
274 ALOGE("%s did not have expected contents", hctosys_path.string());
275 else
276 ret = hctosys;
277
278 fclose(file);
279 return ret;
280 }
269行,就是讀取文件hctosys中的值,值為1則允許rtc時間寫入到wall time,為0或者其他錯誤則不允許。
因為rtc只要有紐扣電池供電,就會有計時功能,這是就是為什么,我們的設(shè)備關(guān)機(jī)并重啟后,仍然能夠顯示正確的時間的原因。
【注意目錄/sys/class/rtc/下文件是需要有訪問權(quán)限的】
瑞芯微對文件權(quán)限的控制由以下文件提供:
device/rockchip/common/sepolicy/vendor/genfs_contexts
只需要按照對應(yīng)的格式增加對應(yīng)文件信息即可。