加入星計劃,您可以享受以下權(quán)益:

  • 創(chuàng)作內(nèi)容快速變現(xiàn)
  • 行業(yè)影響力擴(kuò)散
  • 作品版權(quán)保護(hù)
  • 300W+ 專業(yè)用戶
  • 1.5W+ 優(yōu)質(zhì)創(chuàng)作者
  • 5000+ 長期合作伙伴
立即加入
  • 正文
    • 為何要從長距離轉(zhuǎn)為短距離?
    • 推動VSR和光學(xué)器件進(jìn)入數(shù)據(jù)中心的趨勢
    • 可插拔光學(xué)模塊和共封裝光學(xué)器件
    • 通過完整的光學(xué)集成解決方案為團(tuán)隊賦能
  • 相關(guān)推薦
  • 電子產(chǎn)業(yè)圖譜
申請入駐 產(chǎn)業(yè)圖譜

光互連:數(shù)智時代的數(shù)據(jù)傳輸密碼

2022/09/30
1709
閱讀需 11 分鐘
加入交流群
掃碼加入
獲取工程師必備禮包
參與熱點資訊討論

數(shù)智化時代,我們每天都在享受科技帶給我們的便利。當(dāng)你問家里的智能音箱“今天天氣怎么樣”時,智能音箱會立刻根據(jù)你的定位告訴你當(dāng)天的天氣狀況。那么這背后的技術(shù)原理是什么呢?

實際上,我們發(fā)出的“指令”會以數(shù)據(jù)包的形式上傳至互聯(lián)網(wǎng)并進(jìn)入全球的光纖網(wǎng)絡(luò)中,再匯聚到覆蓋數(shù)公里的眾多數(shù)據(jù)中心之一,從而實現(xiàn)信息的接收、映射和轉(zhuǎn)發(fā)。一個指令的數(shù)據(jù)包可能并不大,但假設(shè)一個城市甚至一個國家的人都在同時呼喚智能音箱,觀看短視頻,開zoom會議…那么這個數(shù)據(jù)量可想而知會有多龐大…

為了應(yīng)對數(shù)智化時代人們所產(chǎn)生的龐大數(shù)據(jù)量,數(shù)據(jù)中心對數(shù)據(jù)網(wǎng)絡(luò)和接口速度的要求也在不斷提高,數(shù)據(jù)中心開發(fā)者希望能夠在降低延遲和耗電量的基礎(chǔ)上擴(kuò)大信號的觸達(dá)范圍。長距離(Long-Reach, LR)連接對于日后的數(shù)據(jù)傳輸需求將會略顯吃力,而極短距離(Very Short Reach, VSR)傳輸技術(shù)將是未來趨勢。

為何要從長距離轉(zhuǎn)為短距離?

連接性是指無縫連接系統(tǒng)的能力以及監(jiān)控信息是否能在系統(tǒng)A與系統(tǒng)B之間良好傳輸?shù)哪芰?。連接性是一個標(biāo)準(zhǔn)化指標(biāo),與信號在通信信道上的通信距離有關(guān),由信號的“觸達(dá)范圍”決定。信號的觸達(dá)范圍越廣,耗電量就越大。

傳統(tǒng)的長距離連接是通過銅來互連的,因為銅具有高導(dǎo)電性、延展性、耐熱性和低成本等特點,在網(wǎng)絡(luò)中的應(yīng)用最廣。未來幾年,數(shù)據(jù)的傳輸速率將從每秒100GB增加到200GB,這種情況下再使用電銅互連并通過PCB接口將信號傳輸交換機(jī)就會變得異常困難,而且有點不切實際。盡管在這種情況下依舊可以通過高質(zhì)量等級電纜或有源電纜來實現(xiàn),但這樣不僅會大幅增加插入和功耗損失,機(jī)械問題也會進(jìn)一步加劇,比如電纜剛性,由此將導(dǎo)致很難進(jìn)入和靠近服務(wù)器機(jī)架的背面。

因此如果開發(fā)者希望交換機(jī)能夠以更高的速度運行,則需使用更粗、更密的通道提高數(shù)據(jù)傳輸量,也就是短距離(VSR)連接。

推動VSR和光學(xué)器件進(jìn)入數(shù)據(jù)中心的趨勢

 

相比銅互連,光互連借助光的力量可支持更快的數(shù)據(jù)傳輸、更高的帶寬和速度、以及更低的延遲和功耗。數(shù)據(jù)中心向更高帶寬和新架構(gòu)的轉(zhuǎn)變將會推動光纖傳輸鏈路進(jìn)入更多數(shù)據(jù)中心和機(jī)架中。

在當(dāng)下先進(jìn)的數(shù)據(jù)生成和處理環(huán)境中,有三個基本的市場趨勢驅(qū)動著這一轉(zhuǎn)變:

數(shù)據(jù)中心的數(shù)據(jù)流量增加:僅數(shù)據(jù)中心的數(shù)據(jù)流量增長率就比整個互聯(lián)網(wǎng)的數(shù)據(jù)流量增長率高5倍。根據(jù)Cisco全球云指數(shù)報告,此數(shù)據(jù)流量還將以30%的年均復(fù)合增長率穩(wěn)步增長。要讓所有數(shù)據(jù)在不同工藝節(jié)點之間高效傳輸,就必須在數(shù)據(jù)中心內(nèi),從服務(wù)器和機(jī)架到各個單獨端口之間搭建更密集的互連。這種數(shù)據(jù)中心的內(nèi)部流量需要“更寬”的數(shù)據(jù)通道,以便在更短距離可以傳輸更多數(shù)據(jù),因此很多團(tuán)隊會傾向于使用光學(xué)器件而非傳統(tǒng)銅互連。

通過網(wǎng)絡(luò)扁平化實現(xiàn)低延遲:一個數(shù)據(jù)中心通??扇菁{約100,000臺服務(wù)器。為了讓數(shù)據(jù)在每臺服務(wù)器之間高效傳輸,互連網(wǎng)絡(luò)在引導(dǎo)流量時需降低延遲。因此不能像傳統(tǒng)架構(gòu)一樣讓數(shù)據(jù)穿越多個層級。低延遲要求交換機(jī)或服務(wù)器的數(shù)量不超過三層,由此實現(xiàn)全網(wǎng)絡(luò)的扁平化格局。由于服務(wù)器的數(shù)量龐大,所以網(wǎng)絡(luò)交換機(jī)的尺寸也會變大,并且需要高帶寬才能提高數(shù)據(jù)的傳輸速度,降低運行功耗,這就給交換機(jī)帶來了更大的壓力。

數(shù)據(jù)中心機(jī)架中同質(zhì)資源的聚集:曾經(jīng)有一段時間,數(shù)據(jù)中心被組織成超融合服務(wù)器,其基本構(gòu)件(存儲、計算和內(nèi)存)被整合到一個盒子里,通過銅互連進(jìn)行連接。如今,這種組織方式正在向同質(zhì)化轉(zhuǎn)變,這一趨勢被稱為服務(wù)器的分解。與超融合服務(wù)器相反,同質(zhì)化資源具有共享和自適應(yīng)的計算、內(nèi)存和連接,可實現(xiàn)帶寬控制。這樣不僅能夠?qū)崿F(xiàn)平臺靈活性,提高利用率,還利用了具有低延遲和低功耗特點的超密集光互連。

 

可插拔光學(xué)模塊和共封裝光學(xué)器件

隨著上述趨勢推動多個光互連用例的發(fā)展,光學(xué)器件現(xiàn)在正向服務(wù)器和主機(jī)SoC靠攏(也稱共封裝光學(xué)器件)。但從實施角度來看,可插拔模塊在當(dāng)下可能更現(xiàn)實一些。

可插拔模塊確實會帶來電源問題,但這些問題可通過在主機(jī)SoC中加裝低功耗SerDes作為有源銅纜中的重定時器來解決。通過加裝重定時器,接口在VSR PHY標(biāo)準(zhǔn)上得到優(yōu)化,用于其余的電氣連接。這意味著團(tuán)隊可以降低功耗和面積,而不再需要一個擁堵的長距離接口。雖然重定時器存在于上一代交換機(jī)中,但在插入和通道覆蓋方面仍有明顯損失。此外,由于PCB或連接器中使用了銅信號線,所以需要在中間加裝更多重定時器來補償插入損失。

如果利用VSR連接,無需使用重定時器也能實現(xiàn)接口標(biāo)準(zhǔn)化。數(shù)據(jù)中心以降低功耗來提高數(shù)據(jù)中心網(wǎng)絡(luò)交換機(jī)的帶寬密度的前提正朝著共封裝光學(xué)器件的方向發(fā)展,但是要廣泛采用還需要幾年時間。在此之前,光連接的方式依舊主要通過與VSR鏈路相連的可插拔光學(xué)模塊來滿足。利用這種可插拔模塊,可以更輕松地升級網(wǎng)絡(luò)基礎(chǔ)設(shè)施,從而支持400G、800G以及1.6T的以太網(wǎng)。

VSR應(yīng)用實例

我們以上圖右上方所示的可拔插光學(xué)模塊為例。數(shù)據(jù)通過光纖進(jìn)入光學(xué)模塊后會先轉(zhuǎn)換為電信號,然后需要通過電信號向主機(jī)方向傳輸。這些光學(xué)模塊體積小、結(jié)構(gòu)緊湊,經(jīng)常受到空間和功耗的限制,這意味著每個組件都需要節(jié)能。除了這些挑戰(zhàn),熱力學(xué)極限也會受到影響。因為光學(xué)模塊的尺寸有限,無法配置內(nèi)部冷卻機(jī)制,所以會導(dǎo)致模塊過熱。

這是VSR可發(fā)揮優(yōu)勢的一個關(guān)鍵領(lǐng)域。互連從LR鏈路轉(zhuǎn)換成VSR鏈路后,用戶可節(jié)省大量功耗。當(dāng)下,光學(xué)模塊是VSR最重要的應(yīng)用領(lǐng)域之一。

在光學(xué)模塊的主機(jī)SoC端,情況有所不同。對于主機(jī)SoC端的交換機(jī)來說,VSR連接在克服面積和功耗瓶頸上至關(guān)重要。隨著我們從25Tb一代交換機(jī)過渡至51Tb下一代交換機(jī),LR互連在芯片中占據(jù)的面積會非常大,并且很快就會達(dá)到最高水平,所以制造過程的成本效益不高。

即使采用分割芯片和超短距離(XSR)互連等替代方案,系統(tǒng)的總功耗也相當(dāng)大,并且會影響整體系統(tǒng)性能。因此,VSR將再一次發(fā)揮用武之地,通過低延遲、低功耗和高吞吐量,縮小芯片面積,并將功耗大幅降低50%。

通過完整的光學(xué)集成解決方案為團(tuán)隊賦能

隨著VSR市場不斷發(fā)展,其功耗、性能和面積(PPA)優(yōu)勢受到業(yè)界關(guān)注,廣泛的集成支持和生態(tài)系統(tǒng)互操作性成為關(guān)鍵。新思科技112G以太網(wǎng)PHY IP支持長、中、甚短和超短(LR、MR、VSR、XSR)電通道以及CEI-112G-線性和CEI-112G-XSR+光學(xué)接口。高能效PHY可提供出色的信號完整性能和抖動性能,超越IEEE 802.3ck和OIF標(biāo)準(zhǔn)電氣規(guī)范的要求。

客戶現(xiàn)在有了一個全面且合規(guī)的解決方案,該解決方案針對28GHz奈奎斯特頻率下超過20dB的VSR通道進(jìn)行了優(yōu)化,并且考慮到了該行業(yè)在功耗或散熱方面的系統(tǒng)瓶頸。鑒于性能是一個多維度挑戰(zhàn),我們會為芯片設(shè)計開發(fā)者定期提供集成、測試、驗證和系統(tǒng)分析支持,以解決關(guān)鍵挑戰(zhàn),這些支持超越了我們所提供的IP范疇。

為實現(xiàn)與其它收發(fā)器的互操作性,新思科技還全面支持跨供應(yīng)商驗證,讓客戶在設(shè)計芯片時獲得不同程度的自由度和信心。新思科技針對VSR開發(fā)的112G以太網(wǎng)PHY IP正在成為800G光學(xué)模塊的理想解決方案。

隨著工作負(fù)載需求和數(shù)據(jù)速率的不斷提高,如果公司在云計算、電子商務(wù)和社交媒體等數(shù)據(jù)密集型領(lǐng)域蓬勃發(fā)展并建有自己的超大規(guī)模數(shù)據(jù)中心,則需要通過VSR連接來管理其數(shù)據(jù)流量的增長。毫無疑問,VSR連接不僅可以將可插拔市場的存續(xù)期延長五年,還能更好地利用我們現(xiàn)有的服務(wù)器。隨著數(shù)據(jù)的生成量和處理量成倍增長,VSR是緩解當(dāng)前銅互連挑戰(zhàn)的理想之選,同時還可在交換機(jī)與服務(wù)器前面板之間提供可靠的電氣接口。

相關(guān)推薦

電子產(chǎn)業(yè)圖譜