摘要
本文介紹ADI公司為開放計(jì)算項(xiàng)目(OCP)開放機(jī)架第3版(ORV3)備用電池單元(BBU)的電池管理系統(tǒng)(BMS)開發(fā)的算法。BMS是任何數(shù)據(jù)中心BBU必不可少的設(shè)備,其主要作用是通過監(jiān)視和調(diào)節(jié)電池包的充電狀態(tài)(SOC)、健康狀況和功率來確保電池包的安全。因此,BMS是數(shù)據(jù)中心中復(fù)雜而重要的組件,必須謹(jǐn)慎設(shè)計(jì)和實(shí)施。
簡介
在探索ADI公司的BBU參考設(shè)計(jì)時(shí),有必要了解BMS的工作原理。BMS負(fù)責(zé)監(jiān)視和調(diào)節(jié)電池的狀況,確保電池在安全參數(shù)內(nèi)運(yùn)行。其中包括監(jiān)視電池堆電壓、電池堆溫度和電池堆整體電流水平,以及管理充電和放電周期。穩(wěn)健的BMS可以使系統(tǒng)實(shí)現(xiàn)理想效率和安全性。延長電池壽命對于維持峰值性能至關(guān)重要。在不知情的情況下頻繁過度充電或過度放電,會損害電池健康,縮短電池使用壽命。通過仔細(xì)監(jiān)測電池的健康狀態(tài)(SOH)并正確使用,可以避免電池意外關(guān)閉或故障,使電池發(fā)揮理想性能。
此外,監(jiān)視電池的SOC對于電池堆的整體健康狀況非常重要。隨著時(shí)間的推移,電池會損失容量,而電量耗盡至零會加速電池容量的損耗。延長電池壽命的理想方法是將電池電量保持在20%到80%之間。了解電池的SOC可確保BBU模塊持續(xù)運(yùn)行更長時(shí)間。
除了SOH和SOC之外,還必須更好地了解放電深度(DOD)。DOD是使用充電電池時(shí)需要考慮的一個(gè)重要因素。它是指在單次放電循環(huán)中消耗的電池容量百分比。一般來說,為了延長電池整體壽命,建議避免將電池放電至20%DOD以下。然而,一些電池可以承受更深程度的放電而不會造成明顯損壞。務(wù)必查詢制造商的指南,了解特定電池的具體放電深度建議。
此外,仔細(xì)考量電池的化學(xué)特性至關(guān)重要。在BBU模塊的設(shè)計(jì)中,使用鋰離子(Li-ion)電池是一個(gè)謹(jǐn)慎的選擇。選擇鋰離子電池是因?yàn)樗训玫綇V泛使用,與OCP ORV3規(guī)范的要求完全一致。1 這種一致性的背后原因在于鋰離子電池的優(yōu)良特性,即出色的能量密度和非常輕的重量。值得注意的是,深入研究鋰離子電池的化學(xué)成分揭示了一個(gè)至關(guān)重要的事實(shí):鋰離子電池的化學(xué)成分是一個(gè)復(fù)雜的關(guān)鍵因素,始終決定著電池的性能、安全性和整體耐用性。
另一個(gè)需要考慮的方面是電池平衡。電池平衡是電池技術(shù)領(lǐng)域的一個(gè)重要概念。隨著對高效、高性能電池的需求不斷增加,實(shí)現(xiàn)理想的電池平衡變得越來越重要。電池平衡是指均衡電池包內(nèi)各個(gè)電池的電壓或SOC的過程。在包含多個(gè)電池的電池包中,每個(gè)電池都有各自獨(dú)特的特性,并且隨著時(shí)間的推移,電池性能可能會發(fā)生變化。制造容差、電池容量變化以及使用模式差異等因素,都可能導(dǎo)致電池不平衡。這些不平衡可能造成電池總?cè)萘繙p少、效率降低,甚至電池包過早失效。相關(guān)設(shè)計(jì)要求BBU上有一個(gè)被動(dòng)平衡器。因此,被動(dòng)平衡涉及使用電阻來泄放或消耗電壓水平較高的電池中的多余能量。這種方法相對簡單且經(jīng)濟(jì)高效,但會導(dǎo)致能量損失和熱量產(chǎn)生。電池平衡可確保電池包中的每個(gè)電池都以理想水平運(yùn)行,從而提高儲能系統(tǒng)的整體效率和有效性,有助于BBU模塊系統(tǒng)更加可持續(xù)和可靠地運(yùn)行。BBU中使用的BMS微控制器是MAX32625。BMS微控制器負(fù)責(zé)兩個(gè)重要的過程。參見圖1。
圖1.連接到BMS IC (ADBMS6948)的BMS微控制器(MAX32625)。
1. 與BMS IC (ADBMS6948)通信,獲取電池電壓、電池溫度、欠壓、過壓和整體電池堆電流水平的遙測數(shù)據(jù)。
2. 通過I2C通信將從器件收集的所有遙測數(shù)據(jù)傳遞到主微控制器。
BMS微控制器通過SPI協(xié)議與ADBMS6948通信。通過發(fā)送適當(dāng)?shù)拿畲a,BMS微控制器允許該器件收集遙測數(shù)據(jù)并同時(shí)執(zhí)行操作。參見圖2。從BMS IC收集的所有數(shù)據(jù)都將由BMS MCU發(fā)送和處理。
圖2.BMS微控制器發(fā)送命令和存儲BMS芯片數(shù)據(jù)的過程。
BMS微控制器的另一個(gè)重要任務(wù)是將收集到的數(shù)據(jù)發(fā)送到主微控制器,用于充電和放電算法及風(fēng)扇轉(zhuǎn)速控制。這是通過與BMS微控制器進(jìn)行I2C協(xié)議通信,然后由主微控制器讀取寄存器來完成的。BMS微控制器的寄存器映射如表1所示。
表1.BMS微控制器寄存器映射
請注意,目前所有BMS微控制器寄存器都是只讀寄存器。構(gòu)建日期和序列號僅采集一次,然后存儲在主微控制器的外部EEPROM中。
電池檢測和平衡操作
電池充電技術(shù)
恒壓(CV)和恒流(CC)是電池充電系統(tǒng)中采用的兩種不同充電技術(shù),可優(yōu)化充電過程并延長電池壽命。
CV充電
CV充電是一種在充電初始階段向電池堆施加固定電壓的充電方法。充電過程開始時(shí),BBU模塊工作在充電模式,保持44V的穩(wěn)定電壓水平,充電電流從5A開始,隨著電池SOC的增加而逐漸減小。這種方法對于防止過度充電特別有效,因?yàn)殡妷罕3趾愣?,不會超過電池的安全電壓限值。電池堆電壓達(dá)到37V至40V或預(yù)定義閾值后,充電器可能會轉(zhuǎn)變到其他充電階段,例如將充電電流從5A減少到0.5A。
CC充電
CC充電則是向電池堆端子施加一致的充電電流。在此階段,充電電流保持在5 A不變,而電池電壓隨著電池充電的進(jìn)行而逐漸升高。
該方法對于初始充電水平較低的電池堆快速充電特別有用。它確保電流以受控方式流入電池堆,直至達(dá)到一定的電壓水平。電池堆電壓達(dá)到預(yù)定點(diǎn)后,充電過程可以轉(zhuǎn)變到其他階段,例如將恒定電流從5A減小到2A,或者進(jìn)入恒壓階段。
在BBU模塊電池堆充電模式中,CV和CC充電方法經(jīng)常結(jié)合使用,以獲得理想的充電曲線。前期CC階段幫助快速向電池傳輸能量,而后期CV階段則通過限制電壓來避免過度充電。這種組合技術(shù)可實(shí)現(xiàn)高效充電,延長電池壽命,并保持電池包的安全性和性能。正確實(shí)施CV和CC充電機(jī)制對于BBU模塊充電操作至關(guān)重要。
電池檢測方法
電池檢測方法是電池管理系統(tǒng)的一個(gè)關(guān)鍵方面。此技術(shù)旨在精準(zhǔn)確定電池包中每個(gè)電池的電壓和狀態(tài)。電池檢測方法采用復(fù)雜的檢測電路和測量算法,讓系統(tǒng)能夠收集有關(guān)每個(gè)電池的電壓、溫度和整體健康狀況的實(shí)時(shí)數(shù)據(jù),然后利用這些信息做出有關(guān)充電、放電和平衡操作的明智決策,從而優(yōu)化電池包的性能、安全性和使用壽命。有效的電池檢測對于維持現(xiàn)代儲能系統(tǒng)的整體效率和可靠性至關(guān)重要。
ADBMS6948有11個(gè)ADC,專門用于檢測電池包的11個(gè)差分電池輸入。電池堆采用11路串聯(lián)和6路并聯(lián)配置,并
連接到C0至C10引腳,即BMS的ADC。ADC的輸入范圍為-2.5V至+5.5V,采樣頻率約為4MHz,每1ms產(chǎn)生16位結(jié)果,LSB為150μV。另有11個(gè)ADC專門利用S引腳同時(shí)測量11個(gè)差分輸入,輸入范圍為0 V至5.5 V,采樣頻率約為4 MHz,每8 ms產(chǎn)生13位結(jié)果,LSB為1.6 mV。這些S-ADC通過完全獨(dú)立于C-ADC的測量方法實(shí)現(xiàn)冗余電池電壓測量。
被動(dòng)平衡操作
被動(dòng)平衡是電池系統(tǒng)管理中常用的技術(shù),它采用無源元件(特別是電阻)和并聯(lián)在每個(gè)電池上的集成MOSFET來實(shí)現(xiàn)電池平衡。這些集成元件承擔(dān)電壓泄放器或能量耗散器的作用,有利于讓表現(xiàn)出較高電壓或能量狀態(tài)的電池以受控方式耗散多余的能量,使得電池之間的電壓電位或能量狀態(tài)逐漸協(xié)調(diào)一致,從而在較長時(shí)間內(nèi)促進(jìn)電壓和能量平衡。
如果電池包中的電池變得不平衡,BMS必須通過讓電壓較高的電池放電來達(dá)成平衡。ADBMS6948上的S-ADC引腳可用于對單個(gè)電池進(jìn)行放電。S-ADC引腳上內(nèi)置的MOSFET可用于對電池進(jìn)行放電。每個(gè)S-ADC引腳都可以使用PWM單獨(dú)或連續(xù)控制。通過配置PWMA、PWMB和CFGB寄存器,還可以在BMS微控制器處于休眠工作模式時(shí)平衡電池。
使用庫侖計(jì)數(shù)器的電池充電
庫侖計(jì)數(shù)器的主要作用是準(zhǔn)確測量流入流出電池或電路的電荷量(以庫侖為單位)。通過這種測量,可以更好地控制電池堆充電和放電,從而延長電池堆壽命,提高效率,并且更準(zhǔn)確地監(jiān)測容量。
ADBMS6948集成了庫侖計(jì)數(shù)器,因此可以監(jiān)測充電過程中流經(jīng)電池的電荷量。庫侖計(jì)數(shù)器也稱為集成電流傳感器或電荷監(jiān)測器,用于測量流入或流出電池的電荷總量(以庫侖為單位)。使用庫侖計(jì)數(shù)器進(jìn)行電池充電時(shí),計(jì)數(shù)器會監(jiān)測輸送到電池的電荷量。這是通過測量流經(jīng)電池的電流并將其對時(shí)間積分以計(jì)算總電量來完成的。因此,估計(jì)電池的SOC并實(shí)施充電算法可以優(yōu)化充電過程。
ADBMS6948庫侖計(jì)數(shù)器的基本操作涉及將流入流出電池堆的電流對時(shí)間積分,以計(jì)算傳輸?shù)目傠姾?。其工作原理如下?/p>
- 電流測量:該器件測量流入或流出電池堆的電流。這通常利用電流傳感器(例如連接在電池堆低端的分流電阻)來完成。
- 積分:使用ADBMS6948將測得的電流對時(shí)間積分。積分涉及定期對電流值求和以計(jì)算累積電荷。
- 容量計(jì)算:累積電荷轉(zhuǎn)換為安時(shí)(Ah)或庫侖,以提供有關(guān)電池堆剩余容量的信息。
- 監(jiān)視與顯示:計(jì)算出的容量經(jīng)過處理后傳輸?shù)街鱉CU,并顯示在圖形用戶界面上以供進(jìn)一步處理。該信息對于電池管理、確定SOC以及防止過度充電或過度放電非常有價(jià)值。
充電時(shí),庫侖計(jì)數(shù)器會連續(xù)測量流過電池的電流,并將其對時(shí)間積分。通過了解電池的初始SOC,可以將積分電量與初始值相加來估計(jì)充電期間的SOC。此估計(jì)有助于防止過度充電,并支持實(shí)施充電算法,根據(jù)溫度、電池使用時(shí)間和化學(xué)成分等因素優(yōu)化充電過程。
請查看ADI公司之前的文章,了解電池平衡和電池壽命優(yōu)化技巧。對于希望詳細(xì)了解該主題的人士,強(qiáng)烈建議閱讀這些資源。Kevin Scott和Sam Nork撰寫了兩篇關(guān)于電池平衡類型的文章:“被動(dòng)電芯平衡”和“主動(dòng)電芯平衡”。有關(guān)電池特性測試的更多信息,請參閱“配合電量計(jì)使用的鋰離子電池特性測試”。
總結(jié)
綜上,ADI公司的ADBMS6948 BMS與BBU的集成至關(guān)重要。BMS具有許多優(yōu)點(diǎn),可以改善電池系統(tǒng)的性能、安全性、可靠性和壽命。通過優(yōu)化電池性能,良好的BMS有助于最大限度延長電池壽命和提高容量,確保高效利用電池的儲能能力。BMS可以主動(dòng)管理充電和放電過程,防止過度充電、過度放電和過熱,避免損壞電池。安全性是一個(gè)關(guān)鍵方面,尤其是對于電池系統(tǒng)。BMS整合了安全功能和監(jiān)控機(jī)制,以防止熱失控并最大限度地減少潛在危險(xiǎn)。它能防范過流、過壓和異常溫度情況,從而保護(hù)電池系統(tǒng)和周圍環(huán)境。能效是BMS的另一大優(yōu)勢。優(yōu)化充電和放電過程可最大限度地減少能量損失,并提高BBU的整體效率。這意味著可以節(jié)省成本,減少對環(huán)境的影響,增加可用能源的利用率。
BMS還能準(zhǔn)確監(jiān)測和估算電池堆的SOC和SOH。這些信息對于正確管理電池使用情況、計(jì)算剩余運(yùn)行時(shí)間以及規(guī)劃維護(hù)或更換時(shí)間至關(guān)重要。添加庫侖計(jì)數(shù)器對于精確測量和監(jiān)測非常重要。此信息對于在各種應(yīng)用中實(shí)現(xiàn)高效電池管理和延長電池壽命至關(guān)重要,有利于提高系統(tǒng)可靠性并降低意外故障的可能性。
總之,BBU中包含的ADI ADBMS6948 BMS在保證數(shù)據(jù)中心的性能、安全性和可靠性方面發(fā)揮著重要作用。它可以提供每位用戶都應(yīng)該了解的關(guān)鍵信息,以幫助延長電池使用壽命。
本系列的第四部分——“實(shí)現(xiàn)不間斷能源的智能備用電池第四部分:BBU架的操作”——將介紹ADI公司如何設(shè)計(jì)和實(shí)現(xiàn)圖形用戶界面,同時(shí)允許用戶與BBU架上的六個(gè)BBU模塊進(jìn)行通信并從中收集數(shù)據(jù)。該文還會說明作為BBU架專用MCU的MAX32625的功能和操作。
“實(shí)現(xiàn)不間斷能源的智能備用電池第一部分:電氣和機(jī)械設(shè)計(jì)”討論了BBU的電氣和機(jī)械設(shè)計(jì)考慮因素。“實(shí)現(xiàn)不間斷能源的智能備用電池第二部分:BBU微控制器的功能和操作”進(jìn)一步詳細(xì)介紹了主微控制器的軟件。
參考文獻(xiàn)
1David Sun?!伴_放機(jī)架/規(guī)格和設(shè)計(jì)。”開放計(jì)算項(xiàng)目。