輸入電容可能會(huì)成為高阻抗和高頻運(yùn)算放大器(op amp)應(yīng)用的一個(gè)主要規(guī)格。值得注意的是,當(dāng)光電二極管的結(jié)電容較小時(shí),運(yùn)算放大器的輸入電容會(huì)成為噪聲和帶寬問(wèn)題的主導(dǎo)因素。
運(yùn)算放大器的輸入電容和反饋電阻在放大器的響應(yīng)中產(chǎn)生一個(gè)極點(diǎn),從而影響穩(wěn)定性并增加較高頻率下的噪聲增益。因此,穩(wěn)定性和相位裕量可能會(huì)降低,輸出噪聲可能會(huì)增加。實(shí)際上,以前的一些CDM(差模電容)測(cè)量技術(shù)依據(jù)的是高阻抗反相電路、穩(wěn)定性分析以及噪聲分析。這些方法可能會(huì)非常繁瑣。
在諸如運(yùn)算放大器之類的反饋放大器中,總有效輸入電容由 CDM與負(fù)輸入共模電容(或?qū)Φ氐?a class="article-link" target="_blank" href="/tag/CCM/">CCM–)并聯(lián)組成。CDM難以測(cè)量的原因之一是運(yùn)算放大器的主要任務(wù)是防止兩個(gè)輸入不相關(guān)。與測(cè)量CDM的難度相比,直接測(cè)量對(duì)地的正輸入共模電容 CCM+相對(duì)容易一些。在運(yùn)算放大器的同相引腳上放置一個(gè)較大的串聯(lián)電阻并施加正弦波或噪聲源,就可以使用網(wǎng)絡(luò)分析儀或頻譜分析儀來(lái)測(cè)量由運(yùn)算放大器輸入電容而產(chǎn)生的-3dB的頻率響應(yīng)。假定CCM+與CCM–相同,特別是對(duì)于電壓反饋放大器。
但是,這些年來(lái),測(cè)量CDM變得日益困難,運(yùn)算放大器的固有特性會(huì)迫使其輸入相等,從而自舉CDM, 因此所使用的各種不同的技術(shù)都無(wú)法令人滿意。當(dāng)輸入被強(qiáng)制分開(kāi)并進(jìn)行電流測(cè)量時(shí),輸出將試圖進(jìn)行對(duì)抗。檢測(cè)CDM的傳統(tǒng)方法是間接測(cè)量,該方法依賴于相位裕度的降低,且因并聯(lián)使用CCM–等其他電容而變得更復(fù)雜。
我們希望待測(cè)運(yùn)算放大器能夠像客戶平時(shí)的用法一樣,在閉環(huán)條件下正常運(yùn)行并執(zhí)行功能。建議的一種可行方法是分離輸入并進(jìn)行輸出削波,但是這可能會(huì)使內(nèi)部電路無(wú)法工作(取決于運(yùn)算放大器拓?fù)洌虼藢?shí)測(cè)電容可能無(wú)法反映實(shí)際工作電容。在這種方法中,不會(huì)對(duì)輸入進(jìn)行過(guò)度分離,以避免輸入級(jí)的非線性以及過(guò)多的輸出擺幅或削波。本文將介紹一種簡(jiǎn)單直接的CDM測(cè)量方法。
測(cè)量CDM新方法
只使用增益為1的緩沖電路,并使用電流源激勵(lì)輸出和反相輸入。輸出和反相輸入將僅在運(yùn)算放大器允許的范圍內(nèi)變動(dòng)。在低頻下,輸出的變動(dòng)很小,因此通過(guò)CDM的電流會(huì)很小。而在過(guò)高頻率下,測(cè)試可能會(huì)無(wú)效,況且結(jié)果也沒(méi)用。但在中頻下,運(yùn)算放大器的增益帶寬會(huì)下降,但不至于太低,輸出變動(dòng)仍可提供足夠大的電壓激勵(lì)和可測(cè)量的通過(guò)CDM的電流。
LTspice?的本底噪聲幾乎不受限制,因此可以進(jìn)行簡(jiǎn)單的測(cè)試仿真,如圖1所示。當(dāng)發(fā)現(xiàn)該技術(shù)在LTspice中相當(dāng)準(zhǔn)確有效后,接下來(lái)的問(wèn)題就是“我可否在現(xiàn)實(shí)世界中獲得足夠的SNR以進(jìn)行良好的測(cè)量?”
圖1. 直接測(cè)量LTspice中的 CDM阻抗。繪制V(r)/I(R1)曲線以獲得阻抗。在本例中,在1 MHz頻率下,-89.996°時(shí)Z為19.89437kΩ (10(85.97/20)), 利用公式C = 1/(2π × Z × Freq),Z正好為8 pF。
T該相位角幾乎等于-90°,這表明阻抗是容性的。2pF共模電容不會(huì)破壞測(cè)量,因?yàn)镃CM–不在路徑中,且1/(2×π×Freq×CCM+)>>1Ω。
挑戰(zhàn):找到合適的設(shè)備和實(shí)際測(cè)試設(shè)置
如圖1所示,將2kΩ電阻串聯(lián)在運(yùn)算放大器的輸出端,以將激勵(lì)從電壓源轉(zhuǎn)換為電流源。這將允許節(jié)點(diǎn)“r”中存在小電壓(它不會(huì)與在運(yùn)算放大器的同相引腳中所看到的電壓相差太遠(yuǎn)),并將導(dǎo)致小電流流入待測(cè)CDM的輸入端之間。當(dāng)然,現(xiàn)在的輸出電壓很?。ㄓ纱郎y(cè)器件(DUT)進(jìn)行緩沖),而且CDM中的電流也很?。ㄔ诒痉抡嬷袨?7nA),因此在工作臺(tái)上使用1Ω電阻進(jìn)行測(cè)量將很困難。LTspice.ac和LTspice.tran仿真沒(méi)有電阻噪聲,但現(xiàn)實(shí)世界中的1Ω電阻具有130pA/√Hz的噪聲,從我們預(yù)期的57nA 電容電流中只能產(chǎn)生57nV信號(hào)。進(jìn)一步的仿真表明,用50Ω或1kΩ代替R1不會(huì)導(dǎo)致在目標(biāo)帶寬范圍內(nèi)的頻率下流入CCM+的損耗電流過(guò)大。為了獲得比簡(jiǎn)單電阻更好的電流測(cè)量技術(shù),可使用跨阻放大器(TIA)代替R1。TIA輸入會(huì)連接到運(yùn)算放大器的同相引腳,在該引腳上需要電流,同時(shí)電壓固定為虛地以消除CCM–中的電流。事實(shí)上,這正是Keysight/Agilent HP4192A等四端口阻抗分析儀的實(shí)現(xiàn)方式。HP4192A可以在5Hz至13MHz的頻率范圍內(nèi)進(jìn)行阻抗測(cè)量。市場(chǎng)上采用相同阻抗測(cè)量技術(shù)的一些新設(shè)備包括具有10Hz至120MHz范圍的E4990A阻抗分析儀和具有20Hz至2MHz范圍的精密LCR表(如Keysight E4980A)。
如下面圖2測(cè)試電路所示,由于阻抗分析儀內(nèi)部的TIA,運(yùn)算放大器的同相引腳保持虛地狀態(tài)。正因如此, CCM+的兩個(gè)端子都被視為處于地電位,因此不會(huì)影響測(cè)量。DUT的CDM兩端產(chǎn)生的小電流將流經(jīng)TIA的反饋電阻Rr然后由內(nèi)部電壓表進(jìn)行測(cè)量。
圖2 CDM測(cè)試電路。
任何使用自動(dòng)平衡電橋阻抗測(cè)量方法的四端口設(shè)備都是測(cè)量CDM的合適選擇。它們?cè)O(shè)計(jì)為從內(nèi)部振蕩器產(chǎn)生正弦波,該內(nèi)部振蕩器以零為中心點(diǎn),具有正負(fù)擺幅,可用于雙電源供電。如果運(yùn)算放大器DUT由單電源供電,則應(yīng)調(diào)整偏置功能,以使信號(hào)不會(huì)發(fā)生對(duì)地削波。圖3中使用了HP4192A,并顯示了與DUT的詳細(xì)連接。
圖3. CDM直接測(cè)量方法的測(cè)試設(shè)置。
圖4顯示了確切的測(cè)試設(shè)置,以使電路板和連線對(duì)CDM的寄生電容貢獻(xiàn)極小。任何通用電路板均可用于低速運(yùn)算放大器,而高速運(yùn)算放大器則需要更嚴(yán)格的PCB板布局。垂直接地的銅分隔板能確保輸入端和輸出端看不到與 DUT CDM平行的其他場(chǎng)路徑。
圖4.HP4192A設(shè)置電路板演示。右側(cè)為通過(guò)2kΩ的激勵(lì)和電壓回讀。所用DUT是貼于LB2223實(shí)驗(yàn)板上的8引腳SO封裝的LT1792。TIA位于HP4192A內(nèi)部的左側(cè)。
結(jié)果與討論
首先,在測(cè)量電路板的板電容時(shí)沒(méi)有使用DUT。圖4所示電路板的測(cè)量條件是16fF電容且沒(méi)有DUT。這是一個(gè)相當(dāng)小的電容,可以忽略不計(jì),因?yàn)橥ǔDM的預(yù)期值為幾百至幾千fF。
使用這種新的CDM測(cè)量技術(shù),可以測(cè)量大多數(shù)JFET和CMOS輸入型運(yùn)算放大器。為了說(shuō)明該方法,以測(cè)量低噪聲精度JFET運(yùn)算放大器LT1792為例。下表列出了在一定頻率范圍內(nèi)的阻抗(Z)、相位角(θ)、電抗XS和 CDM的計(jì)算值。當(dāng)相位角為-90°時(shí),阻抗表現(xiàn)為純?nèi)菪浴?/p>
表1. 電源為±15 V時(shí),LT1792在不同頻率下的阻抗測(cè)量
上述表1給出了在500kHz至5MHz頻率范圍內(nèi)的測(cè)量結(jié)果。在該頻率范圍內(nèi)的相位接近于純?nèi)菪裕ㄏ辔唤菫?89°至-90°)。同時(shí),電抗XS決定了總輸入阻抗,即Z≈XS。CDM的計(jì)算平均值約為10.2pF。最高測(cè)量頻率為5MHz,因?yàn)樵撈骷拑H可達(dá)5.6MHz。更低頻率下 的結(jié)果變得非相干。推測(cè)這是由于運(yùn)算放大器的行為使輸出電壓降低,CDM電流迅速消減,同時(shí)XS阻抗在低頻時(shí)變大。
還應(yīng)在每個(gè)階躍頻率處檢查運(yùn)算放大器的輸出,以確保它不會(huì)被阻抗分析儀產(chǎn)生的信號(hào)過(guò)驅(qū)。來(lái)自HP4192A的該信號(hào)的幅度可在0.1V至1.1V范圍內(nèi)調(diào)節(jié),這剛好足以在運(yùn)算放大器的輸出中產(chǎn)生擺動(dòng),并使反相輸入引腳中的電壓電平略微發(fā)生變動(dòng)。圖5顯示了頻率為800kHz時(shí),運(yùn)算放大器輸出端的峰峰值無(wú)失真信號(hào)(綠色信號(hào))為28mV。2.76V峰峰值幅度(1Vrms)的黃色信號(hào)是直接從分析儀的振蕩輸出端口探測(cè)得的。公平起見(jiàn),可以任意決定不允許輸出失真,不論是對(duì)DUT還是對(duì)HP4192A檢波器。盡管該設(shè)置相對(duì)來(lái)說(shuō)并不受探頭效應(yīng)的影響,但在獲取阻抗和相位的實(shí)際數(shù)據(jù)時(shí)已經(jīng)將探頭移除。
圖5. 在HP4192A“Osc”輸出端口和運(yùn)算放大器輸出引腳探測(cè)到的輸出。
我們進(jìn)行了在不同電源電壓下測(cè)量CDM的測(cè)試。CDM對(duì)電源和共模電壓的依賴性會(huì)隨運(yùn)算放大器的不同而有所不同;不同的拓?fù)浜?a class="article-link" target="_blank" href="/tag/%E6%99%B6%E4%BD%93%E7%AE%A1/">晶體管類型預(yù)計(jì)會(huì)導(dǎo)致高壓電源和低壓電源不同的結(jié)寄生效應(yīng)。表2給出了電源穩(wěn)定在±5V范圍內(nèi)LT1792的結(jié)果。CDM的測(cè)量平均值為9.2pF,與采用±15V電源時(shí)的結(jié)果10pF相當(dāng)接近。因此,可以得出結(jié)論,LT1792的CDM不會(huì)隨電源電壓的改變而發(fā)生顯著變化。這與其CCM形成了鮮明的對(duì)比,后者會(huì)隨電源電壓發(fā)生顯著變化。
表2. 電源為±5 V時(shí),LT1792在不同頻率下的阻抗測(cè)量
同時(shí),雙極性輸入運(yùn)算放大器幾乎與其FET同類產(chǎn)品一樣簡(jiǎn)單。但是,由于它們與CDM電流并聯(lián),因此它們的高輸入偏置電流和電流噪聲較為明顯。此外,雙極性差分對(duì)輸入內(nèi)在的固有差分電阻RDM也與CDM并聯(lián)。表3以低噪聲精密放大器ADA4004為例,顯示了其阻抗測(cè)量。顯然,相位并不表示純?nèi)菪孕袨椋驗(yàn)樗h(yuǎn)離-90°。盡管4MHz、5MHz和10MHz頻率非常接近,但并聯(lián)等效阻抗RC模型將適合本例,以便能夠從其他電阻中提取出CDM。因此,表3中顯示了在一定頻率范圍內(nèi)的并聯(lián)電導(dǎo)GP, 電納BP和CDM的計(jì)算值,其中假定CPP等于CDM。
表3. 電源為±15 V時(shí),ADA4004在整個(gè)頻率范圍內(nèi)的阻抗測(cè)量
根據(jù)表3中的結(jié)果,可以估算出ADA4004的CDM約為6.4pF。結(jié)果還表明,在表3所示的整個(gè)頻率范圍內(nèi),CDM具有相當(dāng)大的并聯(lián)電導(dǎo)GP,并非純?nèi)菪訡DM。測(cè)量顯示該雙極性運(yùn)算放大器的實(shí)際輸入差分電阻約為40kΩ(1/25μS)。
附注:我們嘗試了對(duì)其他類型運(yùn)算放大器進(jìn)行測(cè)量,例如零漂移運(yùn)算放大器(LTC2050)和高速雙極性運(yùn)算放大器(LT6200)。結(jié)果非相干,推測(cè)原因是零漂移運(yùn)算放大器中的開(kāi)關(guān)偽現(xiàn)像以及高速雙極性運(yùn)算放大器中的過(guò)大電流噪聲。
參考結(jié)論
測(cè)量CDM并不困難。需要注意的一點(diǎn)是,HP4192A以幅度和角度報(bào)告阻抗。電容讀數(shù)假定為簡(jiǎn)單的串聯(lián)RC或并聯(lián)RC,而運(yùn)算放大器的輸入阻抗可能要復(fù)雜得多。電容讀數(shù)不應(yīng)僅使用表面標(biāo)稱值。每個(gè)運(yùn)算放大器均具有各自的獨(dú)特情況。輸入阻抗由容性電抗主導(dǎo)的頻率范圍可能因設(shè)計(jì)而異。輸入級(jí)設(shè)計(jì)、所用器件和工藝、米勒效應(yīng)以及封裝都可能對(duì)差分輸入阻抗及其測(cè)量產(chǎn)生很大的整體貢獻(xiàn)。我們對(duì)JFET輸入運(yùn)算放大器和雙極性輸入運(yùn)算放大器進(jìn)行了測(cè)量,展示CDM結(jié)果以及雙極性輸入運(yùn)算放大器的RDM結(jié)果。